Article ID Journal Published Year Pages File Type
5425017 Surface Science 2006 8 Pages PDF
Abstract

The adsorption of NO on the (1 1 1) and (1 1 0) surfaces of ceria (CeO2) was studied using projector-augmented wave (PAW) method based density-functional theory within the generalized gradient approximation (GGA). Several adsorption sites for NO on the stoichiometric surfaces are found, all with weak molecule-surface interaction. The adsorption on the reduced surfaces is much stronger. The O-ends of the adsorbed NO molecules fill the oxygen vacancies and the N-O bonds are elongated. If two such adsorbed NO molecules, residing at neighbouring sites, meet, their N-ends will form a strong N-N bond with little or no barrier. This is an intermediate step towards dissociation of free N2 which is calculated to be strongly thermodynamically driven.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,