Article ID Journal Published Year Pages File Type
5425122 Surface Science 2007 6 Pages PDF
Abstract

Deposition and fabrication of films of Au nanoclusters protected by alkanethiolate ligands are attempted on a TiO2(1 1 0) surface and the structures of films are observed by a scanning tunneling microscope (STM). Effects of oxygen and hydrogen-plasma etching in addition to UV irradiation on the structure and chemical composition of the films are also investigated by using STM and X-ray photoelectron spectroscopy. Alkanethiolate Au nanoclusters are produced using a modified Brust synthesis method and their LB films are dip-coated on TiO2(1 1 0). Alkanethiolate Au nanoclusters are weakly bound to the substrate and can be manipulated with an STM tip. Net-like structures of alkanethiolate Au nanoclusters are formed by a strong blast of air. Oxygen-plasma etching removes alkanethiolate ligands and simultaneously oxidizes Au clusters. At room temperature, prolonged oxygen-plasma etching causes agglomeration of Au nanoclusters. UV irradiation removes ligands partly, which makes Au nanoclusters less mobile. The net-like structure of alkanethiolate Au clusters produced by a blast of air is retained after oxygen and hydrogen-plasma etching.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,