Article ID Journal Published Year Pages File Type
5425208 Surface Science 2007 7 Pages PDF
Abstract
Nano-structured “teflon-like” coatings characterized by highly-fluorinated, random, ribbon-shaped, micrometers-long structures were deposited on polyethylenetherephtalate (PET) substrates by plasma enhanced-chemical vapour deposition (PE-CVD) using modulated radiofrequency (RF, 13.56 MHz) glow discharges fed with C2F4 in modulated discharge (MD) and continuous wave (CW) regimes. Surfaces obtained in this way featured identical chemical composition and different roughness in the nanometric scale. Water contact angle (WCA) measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized to characterize the surfaces. A positive relationship was shown to exist between the WCA value and the mean nano-structure height and the area root-mean-square (RMS) roughness of coatings. The possibility of obtaining coatings of varying nano-structure height, i.e., roughness, in a nanometric scale represents a promising result for further use of these surfaces as substrates for experiments on cell adhesion, proliferation and growth.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,