Article ID Journal Published Year Pages File Type
5425428 Surface Science 2007 7 Pages PDF
Abstract

The structure of the nano-sized cobalt clusters on bare NiAl(1 0 0) and an oxidized NiAl(1 0 0) surfaces have been investigated by AES, LEED and RHEED. The deposition of Co onto bare NiAl(1 0 0) at room temperature led to small crystalline Co grains and surface asperities of substrate. The latter is likely induced by replacement of surface Al, Ni atoms by Co deposit. At 800 K Co particles aggregate to form clusters, but incorporation of Co into bulk NiAl(1 0 0) could occur upon annealing at 900 K. On the other hand, pure face-centered cubic (fcc) phase of Co crystallites of ≈1 nm in diameter with inclusion of smaller-sized particles (D < 1 nm) are observed on Θ-Al2O3 after Co deposition at room temperature. After annealing the Co nano-clusters grow larger at expense of small particles (D ≈ 3 nm), where the [1 1 0] and [−1 1 0] axis of the Co(0 0 1) facets are parallel to the [1 0 0] and [0 1 0] directions of (0 0 1)oxide, respectively. The in-plane lattice constant of Co clusters is ca. 4% larger than that of bulk Co, yielding less strain at the Co/oxide interface. A 15° ± 10% random orientation of the normal to (0 0 1) facet of Co clusters with respect to (0 0 1)oxide surface was deduced from the “arc”-shape reflection spots in RHEED. These results suggest that both orientation and phase of Co clusters are strongly affected by the nature and structure of oxide surface.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,