Article ID Journal Published Year Pages File Type
5425494 Surface Science 2006 8 Pages PDF
Abstract

The chemistry of a common copper deposition precursor, (hexafluoroacetylacetonate)Cu(vinyltrimethylsilane), (hfac)Cu(VTMS), on a single crystal Si(1 0 0)-2 × 1 surface is described at the molecular level using a combination of experimental surface analytical techniques under ultra-high vacuum conditions with computational analysis. At a cryogenic temperature of 100 K, (hfac)Cu(VTMS) adsorbs on this surface molecularly, without noticeable decomposition. Upon surface annealing, VTMS is easily released into the gas phase below the room temperature, while the hfac ligand is bound to the surface through the copper atom. When (hfac)Cu(VTMS) is adsorbed at room temperature, VTMS is released into the gas phase immediately, leaving surface adsorbate analogous in structure to the one formed by adsorption at cryogenic temperature and a brief annealing to room temperature. Upon surface annealing, the hfac ligand decomposes and constitutes the main source of impurities in copper deposition process.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,