Article ID Journal Published Year Pages File Type
5425546 Surface Science 2007 5 Pages PDF
Abstract

The self diffusion of Mn and Pd in a single grain icosahedral Al69.9Pd20.5Mn9.6 quasicrystal has been determined by low energy ion scattering (LEIS). The diffusion was determined by depositing different elements (Pd, Mn) on the surface and measuring the rate of change in surface composition as a function of temperature by LEIS. The surface composition was monitored over the temperature range of 355-575 K for Mn and 440-745 K for Pd and compared to model calculations to allow the activation energy for diffusion to be determined. Activation energies of 0.20 ± 0.01 eV for Mn and 0.64 ± 0.03 eV for Pd have then been measured for self diffusion in i-Al-Pd-Mn, respectively. No deviation from Arrhenius behavior was detected in the temperature range covered by the present experiments. From the low values of activation energy we propose that this range of diffusion is phason related, reflecting the specific nature of the icosahedral structure.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,