Article ID Journal Published Year Pages File Type
5425646 Surface Science 2007 7 Pages PDF
Abstract

We study the technology of local anodic oxidation (LAO) by the AFM tip applied to semiconductor heterostructures with two-dimensional electron gas. The aim is to design mesoscopic rings with persistent current and one subband occupied. For this purpose the need is to oxidize narrow lines that represent energy barriers high enough. Using the electrostatic model, we explain the electric field distribution in the system tip-sample just before LAO starts. We study the influence of the conductivity of the cap layer on LAO and explain the origin of the saddle-like profile lines, observed in the experiment. Using Monte Carlo simulation we show that the carrier redistribution in the system with LAO energy barriers effectively lowers the barrier height. In the experimental part we have grown InGaP/AlGaAs/GaAs heterostructures by organometalic vapor phase epitaxy with an active layer only 31 nm below the surface. We have prepared oxide lines on the heterostructures by LAO and characterized them by the temperature-dependent transport measurement.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,