Article ID Journal Published Year Pages File Type
5425649 Surface Science 2007 5 Pages PDF
Abstract

We report for the first time on muscovite mica surfaces nanostructured by a low-energy defocused Ar ion beam: ripple structures self-organize on macroscopic areas, with wavelength and roughness in the range 40-140 nm and 0.5-15 nm respectively, according to ions dose. In detail we address structural and chemical variations of the surface layer induced by sputtering. X-ray Photoelectron Spectroscopy (XPS) survey spectra reveal selective sputtering and Al surface enrichment whereas Atomic Force Microscopy (AFM) force-spectroscopy experiments indicate reduced charging of irradiated specimens under aqueous electrolyte solutions. Such experimental evidences contribute to clarify the chemical and physical properties of nanostructured mica samples, in view of their potential use as templates for aligned deposition of organic molecules and investigations on nanolubrication phenomena.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,