Article ID Journal Published Year Pages File Type
5425788 Surface Science 2007 9 Pages PDF
Abstract

Ultra-thin films of para-hexaphenyl (6P) were prepared on muscovite mica (0 0 1) utilizing organic molecular beam deposition (OMBD) under well defined ultra high vacuum (UHV) conditions. The 6P growth characteristics were studied as a function of substrate temperature and substrate surface conditions. For the initial state of layer growth, thermal desorption spectroscopy (TDS) was used to verify the existence of a wetting layer. In this monomolecular continuous wetting layer, the molecules lie flat on the surface and are rather strongly bonded. For thicker films, in-situ X-ray photoelectron spectroscopy (XPS) in combination with (TDS) was applied to reveal the kinetics of the layer growth. Ex-situ atomic-force microscopy (AFM) was used to determine the film morphology. In particular, the influence of surface modifications (carbon contamination, sputtering) on 6P layer growth was investigated. XPS and low energy electron diffraction (LEED) were used to characterize the mica surface before the film deposition. TDS and AFM revealed a considerable change in film growth, from a needle-like island growth of flat laying molecules on top of the wetting layer (for the air cleaved mica) to terrace-like film growth of standing molecules, without a wetting layer (after surface modifications).

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,