Article ID Journal Published Year Pages File Type
5425998 Surface Science 2006 8 Pages PDF
Abstract

A recently developed Cu Kα1 (hν = 8047.8 eV) X-ray source/ESCA300 electron spectrometer combination has been used to investigate the intrinsic plasmon energy losses associated with the Fe 1s core level (binding energy = 7111 eV) in metallic iron. The surface and bulk intrinsic plasmon energy losses were separated and it was found that using the theoretically calculated extrinsic energy loss cross-section to represent the bulk intrinsic energy loss cross-section gave an overall intrinsic loss probability which is approximately the same as if a Lorentzian type cross-section is used. However, this approach does not separate the surface and bulk intrinsic losses properly and is not a good approximation for peak shape analysis in the near peak region. A more realistic approximation is provided by using a Lorentzian type energy loss cross-section to represent the bulk intrinsic energy losses. It has also been shown that for the Fe 1s core level of metallic iron the probability that a photoelectron will suffer an intrinsic energy loss is higher at the surface than in the bulk. Also for this core level the excitation probability for the intrinsic plasmons is greater than that of the extrinsic plasmons. Hence ignoring the intrinsic plasmons would cause considerable error in peak shape analysis in the near peak region.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,