Article ID Journal Published Year Pages File Type
5426075 Surface Science 2007 8 Pages PDF
Abstract

Thin film growth of 6,13-pentacenequinone (C24H12O2, PnQ) on Si(1 1 1)-7 × 7 at room temperature (RT) was studied by low-energy electron microscopy (LEEM) and ab initio density functional theory (DFT) calculations. Our experiments yielded direct microscopic observation of enantiomorphic evolution mechanism in the initial stage of the chiral-like growth of PnQ islands, under kinetic growth conditions. We observed that the faster growth direction aligns with the direction of easier molecule incorporation, or lowest kink formation energy, rather than along the lowest energy step. Real time observation of the growth and subsequent relaxation of island shape revealed that kinetically stiff direction differs from the thermodynamic one. This feature together with anisotropic mass incorporation determines the enantiomorphic evolution and rotational arrangement of crystallites during the growth of elongated organic molecules, like PnQ.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,