Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5426253 | Surface Science | 2007 | 6 Pages |
A new variant of random sequential adsorption (RSA), namely random sequential ballistic adsorption (RSBA), is proposed to explore the possible role of blocking effects in the adsorption dynamics of ballistically arriving objects. These objects upon adsorption can protrude outside the substrate and in turn can obstruct and hence reject the adsorption of newly arriving objects. Adsorption of linear macromolecules (modeled as infinitesimally thin needles), on a two-dimensional continuum substrate is studied using RSBA model. It is shown analytically that in late time regime, the number n(t) of adsorbed objects at time t follows a power law n(t) â¼Â tα, as in RSA, but with a different exponent, α = 2/3. Computer simulations are also carried out. The simulation results are found to be in close agreement with the analytical results. The exponent behavior for real experimental conditions is also analyzed.