Article ID Journal Published Year Pages File Type
5426357 Surface Science 2006 10 Pages PDF
Abstract

O 1s scanned-energy mode photoelectron diffraction has been used to determine the local structure of molecular water on TiO2(1 1 0). The adsorption site is found to be atop five-fold coordinated surface Ti atoms, confirming the results of published total energy calculations and STM imaging. The Ti-Ow bondlength is found to be 2.21 ± 0.02 Å, much longer than Ti-O bondlengths in bulk TiO2 and for the formate (HCOO-) species adsorbed on this surface. This is consistent with relatively weak bonding, and in general agreement with total energy calculations, although all of the published calculations yield bondlengths somewhat longer than the experimental value. Structural optimisation based on the photoelectron diffraction data also provides some information on the associated substrate relaxation. In particular, the bondlength of the five-fold coordinated surface Ti atom to the O atom directly below shows the same contraction (relative to the bulk) as is found for the clean surface, reinforcing the picture of rather weak bonding of the water to this same Ti surface atom.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,