Article ID Journal Published Year Pages File Type
5426554 Surface Science 2007 5 Pages PDF
Abstract

We have studied single Si dangling bonds on the Si(0 0 1) surface using scanning tunnelling microscopy (STM) and density functional theory (DFT) calculations. The Si dangling bonds are created by the chemisorption of single hydrogen atoms forming a Si-Si-H hemihydride. At room temperature, the hemihydride induces static buckling on adjacent Si-Si dimers. In the STM measurements, we observe that the orientation of the static buckling pattern can be reversed with tip-sample bias and influenced by the substrate doping. Our DFT calculations yield a correlation between the electron occupancy of the hemihydride Si dangling bond and the buckling orientation around it.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,