Article ID Journal Published Year Pages File Type
5426571 Surface Science 2007 4 Pages PDF
Abstract

Using the RTM/NEGF method, which is a first-principles calculation tool for the quantum transport through nanostructures between electrodes, we study the effects of atomic-scale contacts on the transport properties through single molecules. Electronic states and current-voltage (I-V) characteristics are investigated in various contact conditions with and without single molecules between electrodes. We find that similar nonlinear behaviors appear in the I-V characteristics. Such nonlinear behaviors are determined not only by the HOMO-LUMO electronic states of single molecules between electrodes, but also by the atomic-scale contact conditions. We show that the transitions from tunneling to ballistic regimes affect the I-V characteristics significantly.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,