Article ID Journal Published Year Pages File Type
5429817 Journal of Quantitative Spectroscopy and Radiative Transfer 2010 5 Pages PDF
Abstract

The ν9 fundamental band (C-C-C deformation) of propane (C3H8) at 369 cm−1 has been studied at high-resolution (0.0011 cm−1) with spectra recorded using the synchrotron radiation from the French light source facility at SOLEIL coupled to a Bruker IFS 125HR Fourier transform spectrometer. A 2.526 m base multipass cell with optical paths from 10.296 to 151.78 m was used. In addition, a spectrum was also recorded using a conventional globar source. Comparison of these experimental spectra shows clearly the gain obtained on the signal-to-noise ratios with the synchrotron radiation. The spectra have been thoroughly analyzed and transitions up to J=65 and Ka=33 have been assigned. The upper-state rotational levels were fitted using an A-type Watson Hamiltonian written in the Ir representation. An accurate band center ν0 (ν9)=369.228080(25) cm−1 as well as accurate rotational and centrifugal distortion constants have been obtained and used to simulate a synthetic spectrum. These parameters should be useful to simulate hot bands of propane involving the 91 vibrational level as their lower state.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , , , ,