Article ID Journal Published Year Pages File Type
5430013 Journal of Quantitative Spectroscopy and Radiative Transfer 2018 17 Pages PDF
Abstract

A general algorithm is introduced for the analysis of near-field radiative heat transfer in one-dimensional multi-layered structures. The method is based on the solution of dyadic Green's functions, where the amplitude of the fields in each layer is calculated via a scattering matrix approach. Several tests are presented where cubic boron nitride is used in the simulations. It is shown that a film emitter thicker than 1 μm provides the same spectral distribution of near-field radiative flux as obtained from a bulk emitter. Further simulations have pointed out that the presence of a body in close proximity to an emitter can alter the near-field spectrum emitted. This algorithm can be employed to study thermal one-dimensional layered media and photonic crystals in the near-field in order to design radiators optimizing the performances of nanoscale-gap thermophotovoltaic power generators.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , ,