Article ID Journal Published Year Pages File Type
5430112 Journal of Quantitative Spectroscopy and Radiative Transfer 2009 13 Pages PDF
Abstract

Light scattering by nonspherical and inhomogeneous small particles is studied by varying particle shapes, sizes, and compositions. We introduce an efficient tool for deforming particle shape and composition by adding a coating on an initial particle. This concave-hull transformation is applied to wavelength-scale Gaussian and aggregate particles, and the differences in the optical properties of the coated particles are compared to those of the uncoated geometries. The light-scattering computations are performed using the discrete-dipole approximation method which allows for internal inhomogeneity and irregular particle shapes. The results are analyzed concentrating on the intensity of the scattered light, the degree of linear polarization for unpolarized incident light, and the depolarization ratio. Polarization results yield the most significant differences and, moreover, coated aggregates are observed to produce net positive polarization, whereas it is negative for the Gaussian particles, also resembling the polarization of a spherical particle. As for the depolarization ratio, an intriguing double-lobe feature is observed near the backscattering direction for both particle geometries regardless of size, shape, and composition. The double-lobe maxima and minima generally coincide with those of the intensity and polarization.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , ,