Article ID Journal Published Year Pages File Type
5430465 Journal of Quantitative Spectroscopy and Radiative Transfer 2008 13 Pages PDF
Abstract

This paper presents the computation of radiation heat transfer in a cylindrical enclosure in which the dimensions, the chemical species concentrations and the temperature fields make a realistic representation of an actual combustion chamber. Two gas models are applied and compared: the absorption-line blackbody distribution function (ALBDF), and the standard weighted-sum-of-gray-gases (WSGG) based on coefficients and correlations that are widely used in engineering. While the standard WSGG is restricted to the assumption of homogeneous gas mixture, the ALBDF can be applied to both homogeneous and non-homogeneous media. For the two gas models, the radiative exchanges are computed with the aid of the Monte Carlo method. The results show considerable discrepancies between the WSGG and the ALBDF models for the homogeneous medium. In addition, the importance of considering the non-homogeneity of the medium for an accurate computation of the radiative heat transfer is shown.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , ,