Article ID Journal Published Year Pages File Type
5430654 Journal of Quantitative Spectroscopy and Radiative Transfer 2006 12 Pages PDF
Abstract

The Direct Simulation Monte Carlo (DSMC) model is presented for three-dimensional single scattering of natural light by suspended, randomly oriented, optically homogeneous and isotropic, rounded and stochastically rough cubic particles. The modelled particles have large size parameter that allows geometric optics approximation to be used. The proposed computational model is simple and flexible. It is tested by comparison with known geometric optics solution for a perfect cube and Lorenz-Mie solution for a sphere, as extreme cases of the class of rounded cubes. Scattering and polarization properties of particles with various geometrical and optical characteristics are examined. The experimental study of real NaCl crystals with new Progra2 instrument in microgravity conditions is conducted. The experimental and computed polarization and brightness phase curves are compared.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , , , ,