Article ID Journal Published Year Pages File Type
5430802 Journal of Quantitative Spectroscopy and Radiative Transfer 2007 13 Pages PDF
Abstract

This paper presents the application of the Monte Carlo method to solve the radiative heat exchange in non-homogeneous, non-isothermal gases with spectrally dependent properties. Among others models, the absorption-line blackbody (ALB) distribution function, originally defined and derived for the spectral line-based weighted-sum-of-gray-gases (SLW) model, allows an immediate, simple implementation of the Monte Carlo method to account the spectral dependence of the radiative properties. This work shows how the Monte Carlo method can be combined to the ALB distribution function, and provides results for heat transfer in a mixture of water vapor, carbon dioxide and nitrogen that have satisfactory agreement with the SLW method and with line-by-line integration. Finally, the solution technique is employed to solve two examples aiming at demonstrating the effect of the absorbing species concentration on the thermal radiative exchanges. The method is of great interest for the computation of radiative transfer in combustion systems where the chemical species concentration and the temperature are not uniform.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , ,