Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5430841 | Journal of Quantitative Spectroscopy and Radiative Transfer | 2007 | 22 Pages |
In this paper, the first part of two, we present new high-spectral-resolution infrared (IR) optical constants for multi-component aqueous solutions composed of ammonium sulfate, ammonium nitrate, sulfuric acid and nitric acid over a range of compositions and temperatures representative of tropospheric conditions and atmospheric aerosols. The optical constants were determined from ATR measurements via a Kramers-Kronig transformation. To accomplish this, we adapted an existing technique for estimating the real index of refraction of aqueous sulfate and nitrate solutions at multiple visible frequencies as a function of concentration and temperature. An approximation of the low-frequency behavior of the ATR spectrum was also used to reduce the error associated with using ATR data of finite frequency range.This paper also provides a brief examination of absorption spectra for analyzed mixtures in relation to their composition and temperature and discusses possible implications. The new optical constants will be of great utility to high-spectral-resolution IR remote sensing as well as radiative balance analysis in climate studies because they will enable researchers for the first time to model the impacts of tropospheric aqueous sulfate-nitrate-ammonium multi-component aerosols, including their mixtures with other important species such as dust or soot.