Article ID Journal Published Year Pages File Type
5431187 Journal of Quantitative Spectroscopy and Radiative Transfer 2006 10 Pages PDF
Abstract

In recent years, high-resolution photoelectron spectroscopy and ab initio calculations have considerably revised and enlarged the understanding of the electronic structure of the NO and NO+ molecules. The experimental potential energy curves for the different electronic states of atmospheric interest molecules like NO and NO+ are constructed by using the Rydberg-Klein-Rees method as modified by Vanderslice et al. The ground state dissociation energies are determined by curve fitting technique using the five parameter Hulburt-Hirschfelder (H-H) function. The estimated dissociation energies are 6.381 and 10.693 eV for NO and NO+, respectively. These values are in good agreement with the literature values. The r-centroids and Franck-Condon factors (FC Factors) for the band system of B2Πr-X2Π of NO and a3Σ+-X1Σ+, A1Π-X1Σ+ of NO+ molecules have been calculated employing an approximate analytical methods of Jarmain and Fraser, and Nicholls and Jarmain. The absence of the bands in these systems is explained.

Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , , , , ,