Article ID Journal Published Year Pages File Type
5431530 Carbon 2017 8 Pages PDF
Abstract

In this work, we exploit the bidimensional structure and high stiffness of graphene to improve the tribological response of nylon-based composites. Graphene nanoplatelets, coupled with polytetrafluoroethylene microparticles, synergistically improve the friction coefficient and wear rate, as well as the adhesion to the substrate. The enhancement, as high as threefold for both friction and wear rate at the optimal graphene concentration (0.5% in weight), depends upon the formation of a continuous, robust transfer film with the steel rubbing counterpart, as shown by Raman measurements. The graphene-nylon coating also shows three-fold improved adhesion to the underlying substrate, attributed to the high surface energy of graphene.

Graphical abstractDownload high-res image (229KB)Download full-size image

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , ,