Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5431839 | Carbon | 2017 | 8 Pages |
Establishing good electrical contacts to nanoscale devices is a major issue for modern technology and contacting 2D materials is no exception to the rule. One-dimensional edge-contacts to graphene were recently shown to outperform surface contacts but the method remains difficult to scale up. We report a resist-free and scalable method to fabricate few graphene layers with electrical contacts in a single growth step. This method derives from the discovery reported here of the growth of few graphene layers on a metallic carbide by thermal annealing of a carbide forming metallic film on SiC in high vacuum. We exploit the combined effect of edge-contact and partially-covalent surface epitaxy between graphene and the metallic carbide to fabricate devices in which low contact-resistance and Josephson effect are observed. Implementing this approach could significantly simplify the realization of large-scale graphene circuits.
Graphical abstractDownload high-res image (197KB)Download full-size image