Article ID Journal Published Year Pages File Type
5431868 Carbon 2017 13 Pages PDF
Abstract

Hydrogenated graphite was synthesized through a Birch−type reduction by treating fluorinated graphite ((CFx)n, x ∼ 1.1) with a solution of Li in liquid NH3 followed by the addition of H2O as the proton donor. The conversion was evaluated by Fourier transform infrared spectroscopy, Raman spectroscopy and powder X−ray diffraction. X−ray photoelectron spectroscopy and combustion elemental analysis were used to determine and quantify the chemical composition, giving an empirical formula of C1H0.60O0.06N0.01 for the product with no more than 2 at.% of fluorine atoms remaining. Thermal dehydrogenation of the hydrogenated material - as investigated by thermogravimetric analysis coupled to mass spectrometry - predominately occurs over the range of 350-600 °C. The product was also analyzed using scanning electron microscopy, atomic force microscopy and transmission electron microscopy, which collectively supported the formation of hydrogenated graphene sheets through a wet−chemical route. To elucidate the structure of the hydrogenated sample, the material was investigated by solid−state nuclear magnetic resonance spectroscopy. Direct pulse and cross−polarization nuclear magnetic resonance measurements, including spin counting, spectral editing and 2D heteronuclear correlation experiments, revealed the nature of the sp3− and sp2−hybridized carbon nuclei, and indicated that methine, methylene and quaternary sp3−carbon atoms were present in the hydrogenated material.

Graphical abstractDownload high-res image (125KB)Download full-size image

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , ,