Article ID Journal Published Year Pages File Type
5432261 Carbon 2017 7 Pages PDF
Abstract

Graphene nanoribbons (GNRs) are promising for applications in nanoelectronics due to their unique properties. Therefore, achieving the controlled and high-quality synthesis of GNRs is anticipated to be of great importance. One of the methods which shows great potential is the growth of GNRs on surface facets of SiC(0001) by the surface graphitization method. In this report we studied the dependency of the GNR width on growth temperature and SiC substrate miscut angle (or initial step height). While a linear growth rate best describes the growth in lower step heights, a nonlinear rate is observed for substrates with higher steps, which is also associated with the formation of few-layer graphene on the step edges. The structural characterization of the samples was performed by means of atomic force microscopy, scanning electron microscopy, and Raman spectroscopy.

Graphical abstractDownload high-res image (155KB)Download full-size image

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,