Article ID Journal Published Year Pages File Type
5432365 Carbon 2017 8 Pages PDF
Abstract

Horizontally aligned and density-controlled single-wall carbon nanotubes (CNT) represent attractive building blocks for nanoelectronics. In this paper, horizontally aligned CNT arrays and random CNT network are synthesized by thermal CVD at 925 °C in an ethanol atmosphere. With appropriate functionalization applied to the aligned CNTs, a high sensitivity of 8.48% for ambient CO2 gas concentration of 500 ppm is achieved. In addition, these aligned CNT array sensors show much faster response and recovery time than a random CNT network. Moreover, good selectivity against NO2 and NH3, and good repeatability are demonstrated. These results pave the way for a deeper understanding of the physical and electrical properties of single-wall CNT and inter-tube junctions, which could be helpful in designing and optimizing as-grown single-wall CNT for gas sensor and other nanoelectronic devices.

Graphical abstractDownload high-res image (260KB)Download full-size image

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,