Article ID Journal Published Year Pages File Type
54324 Catalysis Today 2014 8 Pages PDF
Abstract

•Au/MgO is efficient for liquid base-free oxidative esterification of MAL to MMA.•The basicity of support determines the catalytic behaviors.•Activity depends on the size of Au and TOF increases with decreasing Au size.

Magnesia-supported gold nanoparticles were found to be highly efficient catalysts for the oxidative esterification of methacrolein (MAL) with methanol in the presence of molecular oxygen into methyl methacrylate (MMA) under liquid base-free conditions. MAL conversion of 98% and MMA selectivity of 99% were obtained over the Au/MgO catalyst at 343 K after a 2 h reaction. Besides the Au nanoparticles, the support also played pivotal roles in the oxidative esterification of MAL. The support with higher density of basic sites, particularly stronger basic sites, showed better performances for the formation of MMA. The enhancement of the intermediate formation by the basic sites is proposed to be the key reason for the superior activity of the Au/MgO catalyst. Our studies on the size effect of Au nanoparticles reveal that smaller Au nanoparticles favor the transformation of MAL, and the turnover frequency increases with decreasing mean size of Au nanoparticles. This suggests that the Au-catalyzed oxidative esterification of MAL is a structure-sensitive reaction. We have demonstrated that the Au/MgO catalyst is also applicable to the oxidative esterification of different aldehydes and alcohols.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (185 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,