Article ID Journal Published Year Pages File Type
5432493 Carbon 2017 7 Pages PDF
Abstract

By means of angle-resolved electron energy loss spectroscopy, we have measured the interband π plasmon in high-quality graphene grown on peeled-off epitaxial Cu(111) foils. Experimental loss spectra have been reproduced by means of a hydrodynamic model. The dispersion relation of the plasmon frequency shows a nearly-flat dispersion up to a critical wave-vector of 0.3 Å−1. We propose that the observed behavior could be originated by confinement effects in ripples in the strained graphene sheet. Strain also limits the dispersion at higher momenta, as a consequence of the increased effective mass of charge carriers. The analysis of momentum dependence of the line-width and of the inverse quality factor indicates that damping processes are dominated by decay in electron-hole pairs via indirect interband transitions.

Graphical abstractDownload high-res image (131KB)Download full-size image

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,