Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5432663 | Carbon | 2017 | 16 Pages |
A novel polyethersulfone (PES) ultrafiltration membrane containing 0.05-2.00Â wt% of synthesized mesoporous carbon nanoparticles (MCNs) was prepared via the phase inversion technique. The structures and properties of MCNs were characterized using a variety of analytic techniques. The MCNs showed the surface area of 1396.8Â m2/g and the highest pore size of around 1Â nm. The effect of incorporation of MCNs on the composite membrane morphology and performance was investigated through pure water flux, protein adsorption, and bacterial adhesion resistance tests. The membrane's anti-fouling performances were determined under constant-pressure operation at 100Â kPa in a dead-end module. The as-prepared nanocomposite membranes were also studied in terms of morphology, structure and surface chemistry. Generally, the incorporation of MCNs into the polymeric membrane improved the pure water flux. The composite membrane containing 0.20Â wt% MCNs exhibited the highest antifouling, protein adsorption resistance, and bacterial attachment inhibition property. The incorporation of the MCNs into the membranes introduces a different strategy of inhibiting biomolecule adsorption and bacterial attachment to the membrane surface, instead of killing the bacteria which may lead to more severe membrane fouling by the intracellular substances.
Graphical abstractDownload high-res image (260KB)Download full-size image