Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5434367 | Materials Science and Engineering: C | 2017 | 10 Pages |
Abstract
A metal-organic frameworks (CuTCPP MOFs) were synthesized with Cu(NO3)2·3H2O and 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) by the solvothermal method. The structure and morphology of the CuTCPP MOFs were characterized by UV-vis absorption spectra, X-ray diffraction (PXRD), energy dispersive spectra, scanning electron microscopy (EDS-SEM) and transmission electron microscopy (TEM). The structure of the as-synthesized MOF includes copper ions and copper metalloporphyrin (Cu-TCPP) by UV-vis absorption spectra and PXRD. The SEM and TEM images of the as-synthesized MOF showed the morphology of the CuTCPP MOFs were spherical. The as-synthesized spherical MOFs as the carriers were used to encapsulate the Ag nanoparticles and prepared Ag-CuTCPP MOFs. The Ag-CuTCPP MOFs was also characterized by UV-vis, PXRD, SEM and TEM. The Ag nanoparticles were completely encapsulated into the CuTCPP MOFs and no surface absorption, which have been confirmed by comparing TEM and SEM-EDS of Ag-CuTCPP MOFs before crushing with that of Ag-CuTCPP MOFs after crushing. In addition, the release of Ag ions from Ag-CuTCPP MOFs was also investigated by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). Furthermore, the antimicrobial activities and cytotoxicity of Ag-CuTCPP MOFs were performed by in vitro and in vivo experiment. In vitro, the antibacterial effect of Ag-CuTCPP MOFs was even better than that of the penicillin as the positive control and the cytotoxicity of Ag-CuTCPP MOFs was significantly lower than that of naked Ag nanoparticles and Ag ions; in vivo, Ag-CuTCPP MOFs not only exhibited the excellently antibacterial effect and extremely low cytotoxicity but also effectively promoted the wound healing.
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Guo Ximing, Guo Bin, Wang Yuanlin, Guan Shuanghong,