Article ID Journal Published Year Pages File Type
5434943 Materials Science and Engineering: C 2017 10 Pages PDF
Abstract

•Liposomes containing tested drugs can be obtained by mREV method.•High degree of encapsulation characterizes obtained liposomes.•Cytarabine and methotrexate release from liposomes followed both: diffusion and controlled mechanisms.

Understanding the interactions which occur between nanomaterials and biomolecules is one of the most important issues in nanotechnology. Determining the properties of nanoparticles obtained through the use of novel methods and defining the scope of their application as drug carriers has important practical significance. Nanoparticles containing methotrexate and cytarabine obtained by a modified reverse-phase evaporation method (mREV) were characterized through the use of the UV/Vis and NMR methods. Obtained results confirmed high degree of analysed drugs encapsulation. The encapsulation efficiencies of cytarabine (AraC) and methotrexate (MTX) in LDPPC/AraC/MTX were found to be 86.30% (AraC) and 86.00% (MTX). The increased permeability of the phospholipid membranes, resulting from physico-chemical properties and the location of the drug, as well as from the physico-chemical properties of the phospholipids themselves, has been confirmed by increase in the length of the T1 relaxation time of protons in the N+(CH3)3 group. The study of analysed drugs release process from the liposomes has been made for bovine serum albumin, both in the absence (dBSA) and in the presence of fatty acid (BSA). Moreover two types of kinetic models (Bhaskar equation and Rigter-Peppas equation) have been used. Based on the study it has been concluded that mathematical modelling of drug release can be very helpful in speeding up product development and in better understanding the mechanisms controlling drug release from advanced delivery systems.

Graphical abstractIn vitro drug release profiles of different liposomal formulation.Download high-res image (178KB)Download full-size image

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , ,