Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5435850 | Acta Materialia | 2017 | 15 Pages |
Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present study, using the AlxCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al0.3 and Al0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinning formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. The present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.
Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (286 K)Download as PowerPoint slide