Article ID Journal Published Year Pages File Type
5436227 Acta Materialia 2017 9 Pages PDF
Abstract

The implications of various size effects on the deformation behavior of and near grain boundaries is not yet fully understood. In this manuscript, slip transfer mechanisms through a general high angle grain boundary (HAGB) allowing for easy transfer are investigated in order to understand the size dependence of the dislocation-grain-boundary interaction. Complementary in situ micro compression tests on copper single and bi-crystals in the scanning electron microscope and with x-ray Laue microdiffraction were used to correlate the mechanical response with the evolving microstructure. It is shown that no dislocation pile-up is formed at the boundary. The lack of pile-up stresses results in a deformation process which is dominated by the initial dislocation source statistics. This is evidenced by similar size scaling of the single and bi-crystalline samples with the grain size being the characteristic length scale.

Graphical abstractDownload high-res image (76KB)Download full-size image

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,