Article ID Journal Published Year Pages File Type
5437296 Ceramics International 2017 9 Pages PDF
Abstract
In order to explore the grinding characteristics of cBN-WC-10Co composites, the grinding experiment with a resin bond diamond grinding wheel was carried out. The grinding forces, surface roughness, surface morphology and residual stress were investigated. It was found that the material removal mechanism of cBN-WC-10Co was the combination of the brittle fracture of cBN particles, ductile removal of Co phase, plastic deformation, grain dislodgement and grain crush of WC grains. The brittle removal model resulted in a lower specific grinding energy. The main contributor to the surface roughness was cBN particles. Some cBN particles over the surface of cBN-WC-10Co composites were fractured or pulled out and then formed cavities with different depths, this led to a rougher surface. The surface roughness was increased but the specific grinding energy decreased with an increase of the maximum undeformed chip thickness. A high-level residual compressive stress was induced at WC phase and it was increased with an increase of the depth of cut. The depth of cut has more significant influence on the grinding forces than the table speed or the wheel speed.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,