Article ID Journal Published Year Pages File Type
5437307 Ceramics International 2017 10 Pages PDF
Abstract

Novel friction composites (C/C-Cu5Si-TiC) were prepared via reactive melt infiltration (RMI) of Cu-Ti alloy into porous C/C-SiC composites. The microstructure, physical properties and tribological behaviors of the novel material were studied. Results were compared to conventional C/C-SiC composites produced by liquid silicon infiltration(LSI). The resultant composite showed the microstructure composed of Cu5Si matrix reinforced with TiC particles and intact C/C structures. Most importantly, the composite did not present traces of free Si. As a result, the C/C-Cu5Si-TiC composite showed higher flexural strength, impact toughness and thermal diffusivity in comparison to C/C-SiC composites. Tribological properties were measured using 30CrSiMoVA as a counterpart. In general, the C/C-Cu5Si-TiC composites showed lower coefficient of friction(COF), but higher wear resistance and frictional stability. The improved wear resistance of the C/C-Cu5Si-TiC composites is credited to the formation of friction films from Cu5Si matrix. Other deformation and wear mechanisms are also described considering the microstructural observations.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,