Article ID Journal Published Year Pages File Type
5437371 Ceramics International 2017 11 Pages PDF
Abstract

Bioactive glasses (BGs) are considered as a high potential candidate in bone repair and replacement. In the present study, sol-gel derived BGs based on 60% SiO2-(36%-x) CaO-4%P2O5-x SrO (where x = 0, 5 and 10 mol%) quaternary system were synthesized and characterized. The effect of Sr substitutions on bioactivity, proliferation, alkaline phosphatase activity of osteoblast cell line MC3T3-E1 and antibacterial activity were investigated. Dried gels were stabilized at 700 °C to eliminate the nitrates and prevent the crystallization of bioactive glasses. X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy results confirmed the formation of hydroxycarbonate apatite on the BG surfaces. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and alkaline phosphate activity results showed that 5% SrO increased both differentiation and proliferation of MC3T3-E1 cells, while 10% SrO resulted in a decrease in bioactivity. Live/Dead and DAPI/Actin staining exhibited viable cell and the morphology of actin fibers and nuclei of MC3T3 cells treated with BG-0 and BG-5. The result of antibacterial test showed that strontium substituted 58S BG exhibited antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, results suggest that 58S BG with 5 mol% SrO is a good candidate for bone tissue engineering with maximum cell proliferation and ALP activity, good bioactivity and high antibacterial efficiency.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,