Article ID Journal Published Year Pages File Type
5437438 Ceramics International 2017 33 Pages PDF
Abstract
Ag3PO4/TiO2 nanosheet (TNS) heterojunction photocatalysts with almost 100% exposed (001) facets were fabricated via a facile in situ growth process. The Ag3PO4/TNS exhibited remarkable photocatalytic activity for the degradation of rhodamine B (RhB) and it was significantly more recyclable under sunlight compared with Ag3PO4. The RhB degradation efficiency was 99.11% after 50 min of sunlight irradiation, and was 85.8% after three cycles. The photocatalytic degradation mechanism of RhB over the Ag3PO4/TNS heterojunctions is driven by both photogenerated holes (h+) and ·O2− radicals. This efficient and reusable Ag3PO4/TNS heterojunction photocatalyst is not only suitable for fundamental research but also has potential for practical applications in the energy and environmental fields. This study demonstrates that applying morphology engineering to heterojunctions is useful for developing composite photocatalysts with greatly improved properties.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,