Article ID Journal Published Year Pages File Type
5437576 Ceramics International 2017 7 Pages PDF
Abstract
Hafnium oxynitride ceramics were prepared in the form of thin films by high-power impulse magnetron sputtering of Hf in various Ar+O2+N2 gas mixtures. Smooth composition control was achieved by maximizing the degree of dissociation in plasma, suppressing the importance of the difference between reactivities of undissociated O2 and N2. The application potential of the films was further enhanced by extremely high deposition rates (e.g. 230 nm/min for stoichiometric HfO2; achieved by feedback pulsed reactive gas flow control), low deposition temperatures (<140 °C) and not using any substrate bias. We focus on the relationships between elemental composition, phase structure, and optical, electrical, mechanical and hydrophobic properties of the materials. We quantify the evolution of smoothly controlled film properties along the transition from an oxide to a nitride, such as increasing extinction coefficient, decreasing electrical resistivity, increasing hardness or increasing water droplet contact angle.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,