Article ID Journal Published Year Pages File Type
5437696 Ceramics International 2017 7 Pages PDF
Abstract
Nanosize multiferroic YFeO3 powders have been synthesized via the low temperature solid-state reaction. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy all indicated that the phase-pure orthorhombic YFeO3 powders were obtained at 800 °C with a size below 150 nm. X-ray photoelectron spectroscopy (XPS) showed the Fe3+ ions to be predominant. Magnetic hysteresis loops exhibited some ferromagnetic behaviour of the YFeO3 nanopowders at ambient temperature. The maximum and remnant magnetizations of the powders were about 2.49 and 0.88 emu/g, respectively. Moreover, optical measurements demonstrated that the optical band gap of the nanopowders was around 2.4 eV, proving that they can strongly absorb visible light. So an easy and efficient way to synthesize YFeO3 nanopowders with promising application in the magnetic and optical fields has been successfully developed.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,