Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5437825 | Ceramics International | 2017 | 23 Pages |
Abstract
A facile method was developed to synthesize SiOx spheres or dumbbell-shaped β-SiC whiskers on expanded graphite (SiOx/EG or β-SiC/EG) by silicon vapor deposition without catalyst. With the carbon black atmosphere, the above hybrids were synthesized above 1100 °C in a graphite crucible where silicon powder was placed under the expanded graphite (EG). The growth of SiOx spheres is controlled by vapor-solid mechanism at 1100 °C and 1200 °C. Namely, the active carbon atoms absorbed SiO (g) and Si (g) to form SiC nuclei. Then, the SiO2, residual SiO (g) and Si (g) deposited on SiC nuclei to form SiOx spheres. At 1300 °C and 1400 °C, the same SiOx spheres formed on EG as well as many dumbbell-shaped β-SiC whiskers. The growth of dumbbell-shaped β-SiC whiskers is controlled by vapor-vapor and vapor-solid mechanism successively. In a word, firstly, the β-SiC whiskers with defects formed via the reaction between Si (g) and CO (g). After that, the SiO2, residual SiO (g) and residual Si (g) preferentially deposited on defects, then deposited on other parts of β-SiC whiskers to form dumbbell-shaped SiC whiskers.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Qinghu Wang, Yawei Li, Shengli Jin, Shaobai Sang, Yibiao Xu, Guanghui Wang, Xiaofeng Xu,