Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5437841 | Ceramics International | 2017 | 11 Pages |
Abstract
Silicon nitride ceramics are widely used as advanced structural components because of their excellent thermal and mechanical properties at ambient and elevated temperatures. In manufacturing industries, grinding is an efficient and productive technique for finishing ceramic workpieces. However, high wheel-workpiece friction and the extreme hardness associated with silicon nitride cause large heat generation during grinding. The heat produced during grinding impairs the workpiece quality by inducing surface and sub-surface damages, tensile residual stresses etc. The damages can critically limit the applications of ground ceramic components. Extensive experimental studies have been carried out to find the effect of dry and nano MQL (Graphite, WS2 and MoS2) grinding conditions on silicon nitride using resin bonded diamond wheel at different parametric (wheel speed, depth of cut and table speed) combinations. Results indicate that the use of nanofluids considerably improve the process performance in terms of grinding forces, surface finish and sub-surface damage. The ground surface is characterized by optical microscopy, SEM/EDX and XRD.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Anil Kumar, Sudarsan Ghosh, S. Aravindan,