Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5437868 | Ceramics International | 2017 | 11 Pages |
Abstract
Trirutile-type CuSb2O6 nanoparticles were synthesized by a simple and economical route, starting from copper nitrate, antimony chloride, ethylenediamine, and ethyl alcohol as solvent. The latter was evaporated by microwave radiation at 140 W. The precursor material was calcined at 200, 300, 400, 500, and 600 °C, and analyzed by powder XRD. The oxide phase was obtained at the last calcination step (600 °C), whose powders were analyzed by field-emission scanning electron (FE-SEM) and transmission electron (TEM) microscopies. Microrods, hexagonal microplates, and nanoparticles with an average size of ~ 51.2 nm were observed. A forbidden bandwidth of 3.41 eV was detected for the direct transition with UV-vis. Tests were carried out on pellets made of the powders in carbon monoxide (CO) and propane (C3H8) atmospheres at different concentrations and operating temperatures, obtaining high response at 300 ppm of CO and 500 ppm of C3H8, both at 300 °C.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
A. Guillén-Bonilla, V.M. RodrÃguez-Betancourtt, J.T. Guillén-Bonilla, A. Sánchez-MartÃnez, L. Gildo-Ortiz, J. Santoyo-Salazar, J.P. Morán-Lázaro, H. Guillén-Bonilla, O. Blanco-Alonso,