Article ID Journal Published Year Pages File Type
5437880 Ceramics International 2017 6 Pages PDF
Abstract
Magnetite (Fe3O4) powders were prepared by solution combustion synthesis method using conventional and microwave ignition at various pH values of starting solution, adjusted by NH4OH. The chelated species in dried gels were predicted by theoretical calculations and Fourier transform infrared spectroscopy. The combustion reaction rate strongly depended on pH values as investigated by thermal analysis. Phase evolution and structure characterized by X-ray diffraction method showed single phase and well-crystalline Fe3O4 powders which were achieved using conventional ignition at pH ≥ 7. However, the microwave ignition led to the formation of impure FeO phase together with Fe3O4. The microwave combusted powders exhibited the disintegrated structure in comparison with the bulky microstructure for conventionally combusted powders, as observed by scanning electron microscopy. Magnetic properties of the as-combusted powders studied by vibration sample magnetometry showed the highest saturation magnetization of 81.3 emu/g for conventional ignition at pH of 7, due to the high purity and large crystallite size.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,