Article ID Journal Published Year Pages File Type
5437938 Ceramics International 2017 20 Pages PDF
Abstract
High-quality ZnO nanorod arrays were grown on silicon substrates by microwave-assisted hydrothermal method. A ZnO seed layer deposited by magnetron sputtering was used for promoting nanorod growth. Process optimization indicates that the size and surface density of nanorods can be controlled individually by varying process parameters including precursor concentration, heating temperature, and heating time. The photoluminescence performance of the nanorods is closely dependent on the mean size of the rods. Reducing rod diameter leads to decreased UV emission and visible emission intensity ratio, which has been attributed to the increased impurities or defects on the rod surface. The present results provide a feasible approach to modify the optical properties of transparent ZnO nanorod arrays.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,