Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5437965 | Ceramics International | 2017 | 7 Pages |
Abstract
A novel precursor was synthesized by reacting hafnium chloride with dicyandiamide and dimethylformamide. The precursor was characterized via FT-IR and NMR, as well as TG. Subsequently, the precursor was annealed in Ar over a range of temperatures from 1000 °C to 2000 °C, and the microstructural evolution of the ceramics was investigated by XRD, XPS, and TEM. The results show that the carbothermal reduction of the precursor starts at 1150 °C and the ceramic yields at 1500 °C reach 44.6 wt%. The obtained powders exhibit a uniform distribution and are composed of N-doped HfC and graphite. The N-doped structure postponed the oxidation of the HfC(N) ceramics. The HfC(N) ceramics were first oxidized to yield HfO2, carbon, and nitrogen, and then the carbon was oxidized with the evolution of CO2. The presented synthesis method is believed to be applicable to the preparation of other high-performance ceramics.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Jun Cheng, Jun Wang, Xiaozhou Wang, Hao Wang,