Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438014 | Ceramics International | 2017 | 29 Pages |
Abstract
In this paper, a ceramic perovskite anode for solid oxide fuel cells (SOFCs) is prepared by infiltrating La and Fe co-doped strontium titanium, La0.3Sr0.7Ti0.3Fe0.7O3-δ (LSTF0.7) into porous backbone of scandia-stabilized zirconia (ScSZ) and tested in pure H2 at 700-850 °C. LSTF0.7 crystal exhibits high reduction stability and good compatibility with ScSZ electrolyte under reducing atmosphere. In order to improve the electrocatalytic activity, 15 wt% of CeO2 and 7 wt% of Ni are infiltrated into the backbone pores respectively, thus forming LSTF0.7-CeO2 and Ni-CeO2-LSTF0.7 composite anodes. The cell with LSTF0.7 single anode shows a relatively lower maximal power density (MPD) of 401 mW cmâ2 in H2 at 800 °C. While the maximal power densities of the cells with LSTF0.7-CeO2 and Ni-CeO2-LSTF0.7 composite anodes are 612 mW cmâ2 and 698 mW cmâ2 operated at the same conditions, respectively. The three anode polarization resistances (Rp,a) distinguished from the corresponding full cells are 0.176, 0.086 and 0.076 Ω cm2 at 800 °C, respectively. The values of the activation energy (Ea) towards H2 oxidation for the three anodes can be calculated to be 52.2, 46.0, 43.9 kJ molâ1 based on their respective Rp,a. Therefore, the LSTF0.7-based anodes are considered to be promising alternatives for solid oxide fuel cell applications.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Jia Xu, Xiaoliang Zhou, Xiaolong Dong, Lu Pan, Kening Sun,