Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438416 | Ceramics International | 2017 | 26 Pages |
Abstract
Reaction bonded B4C-SiC composites were prepared by infiltrating silicon melt into porous B4C-SiC green preforms at 1500 °C in vacuum. The porous green preform was obtained from a mixture of polycarbosilane (PCS) and particle size graded B4C after pre-sintering at 1600 °C. For the first time, PCS was used to adjust the phase composition and microstructure of the reaction bonded boron carbide composites. It is indicated that the addition of PCS and its content has a significant influence on the microstructure as well as the mechanical properties of the subsequent reaction bonded B4C-SiC composites. For the B4C-SiC composite with 5 wt% PCS added, a flexural strength of 319±12 MPa, and an elastic modulus of 402±18 GPa can be achieved, which is 23% and 15% higher than those of the composite without PCS addition, respectively. While, with the higher content of PCS addition, the mechanical properties of the composites are decreased drastically due to the large amount of residual Si agglomeration in the composites. The reaction mechanisms as well as their microstructure evolution processes correlated with the mechanical properties of the reaction bonded B4C-SiC composites are further discussed in our work.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Yucai Zhou, Dewei Ni, Yanmei Kan, Ping He, Shaoming Dong, Xiangyu Zhang,