Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438458 | Ceramics International | 2017 | 5 Pages |
Abstract
The xBi(Zn1/2Ti1/2)O3-BaTiO3 (xBZT-BT) ceramics, where x (mol) =0, 0.03, 0.06, 0.09, and 0.12, have been prepared by a solid-state reaction method. The phase transition, microstructure and optical properties were investigated. X-ray diffraction patterns indicate that the as-prepared samples have a polycrystalline perovskite structure. For x<0.06, the xBZT-BT ceramics exhibit clear tetragonal symmetry, and transform to rhombohedral phase as 0.06< xâ¤0.12. Coexistence of both tetragonal phase and rhombohedral phase is observed for x=0.06. The lattice strain is estimated by the Williamson-Hall analysis model, which suggests that the incorporation of substitution ions into the host lattice produces the inner stress field gives rise to structure distortions. The Raman scattering spectra corroborate the decrease in tetragonality with increasing the x, where the characteristic variation of phonon modes indirectly reveal the incorporation of Bi(Zn1/2Ti1/2)O3. Furthermore, the optical band gaps of xBZT-BT ceramics show a non-linear change, which can be explained by the crystal field theory and phase structure effect.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Lu Yu, Hongmei Deng, Wenliang Zhou, Pingxiong Yang, Junhao Chu,